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GAUGE THEORY, TOM PARKER’S CLASS

NOTES BY KESHAV SUTRAVE
LAST UPDATED: JANUARY 20, 2023

2019/01/09 (These dates record when the actual class occurred and aren’t important.)

The following is 80% notes from Tom Parker’s spring 2019 class on gauge theory, and maybe 20% my own
clarification /worked out exercises.

1. INTRODUCTION TO GAUGE THEORY

1.1. Connections, Curvature, and Gauge.

Fix a complex vector bundle E of rank k over a manifold M of dimension n. We will assume a Riemannian
metric g on M whenever required.
E

“(l
(M, g)
We have a vector space I'(E) of sections ¢. To do calculus on F, we will need two types of geometric
structures:
(1) A (hermitian) metric h on E,
i.e. a hermitian inner product on each fiber E, that varies smoothly with x € M.
This gives us a map
I'E) x I'(E) —» C*(M, C)
that is smooth, nonnegative: (@, @) > 0, and is linear/anti-linear over functions in C*°(M; C).
(2) A way of defining directional derivatives: Vx @, for ¢ in the direction of X, a vector field on M.

But the usual difference quotient formula

i @0(0) — 0(7(0))

t—0 t
doesn’t make sense because the vector spaces E, ;) and E, o) are distinct. We could identify the two vector
spaces via some linear isomorphism and then subtract, but in general our derivative result will depend on
this choice, and there are many non-canonical choices. Instead we define a new object via axioms (note we
use the notion of E-valued p-forms, defined by Q?(M,E) =T (APT*M Q E) ):
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Definition 1.1. A (hermitian) connection on (F, (,)) is a linear map
V:T(E) = T(T*"M ® E) =: Q'(M, E)
e that satisfies the Leibniz rule: for f € C°(M), ¢ € T'(E),
V(fe)=df®@e+ fVe
e and is compatible with the metric on E: for @,V € I'(E)
d(@, ) = (Vo, ) + (@, V)

Remark. One can see this last condition as Vh = 0, as we can define Vh by the very reasonable

d(h(e, ) = (Vh)(@,¥) + h(Ve, ) + h(e, V).

Remark. A connection gives us a directional derivative. For a vector field X on M, we just plug in X
into the 1-form part of V. We write

Vxg = (Vo)(X) € I(E)

and V is also called a covariant derivative.

Remark. If we plug X into V right away, we can see it as an operator
Vx :T(E) - T(E).

Note that after choosing a direction in which to differentiate, Vx keeps objects the same type.
It is also useful to see the conversion between the T*M and the T'M parts of a definition like this.
Remember that Vect(M) = T'(T'M). We could write

V : D(TM) x T(E) — I'(E)
and we should specify that it is C°°(M)-linear in the T'(T'M) part (but only C-linear in the I'(F) part).

Lemma 1.2.

(a) If V and V' are connections, then A =V — V' is a 1-form with values in the bundle of skew-
hermitian endomorphisms of E, i.e. A € QY(M,End(E)) such that, for every X € Vect(M)

(b) Conversely, if V is a connection, and A is as above, then V' =V + A is also a connection.

Proof.
(a) The Liebniz rule shows that A(f@) = fA(p), so A is a tensor. Then writing d{@,\) twice and
subtracting shows the skew-hermitian property. Written out:
(V=-V)(fe)=dfoe+ fVe-df@e—fVe=[f(V-V)e.
Then
0=d{e, ) = d(e, ) = (V= V), ) + (@, (V = V)).
(b) The above basically works backwards: A is tensorial, so
(V+A)(fe)=df @ e+ fVe+A(fe)
=df@e+ Ve + fAg
=df® e+ f(V+Ae.
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Metric compatibility follows from

d{@, ) = (Vo, ) + (@, V1)
= (Vo) + (9, V) + (4@, ) + (@, AY)
=((V+A) e, ) + (0, (V+ AN).

Example 1.3. For the trivial vector bundle E = M x C*, each section ¢ is a just a map M — C*, so
@ = (@1,...,9r). Then we can define a standard metric

k
= Z @i,

or more generally, any hermitian matrix h = (h;;) defines an inner product

k
(@, W)n =D hijeib;.
4,J
Similarly, a standard connection
Vo(p = (d(Pla T ,d(Pk)
But also V = V° + A, where A = 3~ A;d2? with skew-hermitian matrices A;, is a connection. We think
of the matrices A; as in End(CF).

Lemma 1.4.

(a) FEwvery vector bundle E admits a hermitian metric
(b) Fvery hermitian vector bundle (E,{ , )) admits a hermitian connection.

Exercise 1.5. (the proof) Use a partition of unity p, on a locally trivializing open cover of M. Then on
each trivial piece, use the standard metric/connection. Note Y po (@, 1), is still a metric, and > poV
is still a connection.

Proof. As above, let U, be a trivializing open cover of M, p, a partition of unity suboordinate to U,. Define
(,)Y="pal, Yo and V =5 p,V, using the trivial metric and connection, in the following sense:

(a) If @, are sections of E, then write @ = @’e;, b = W'e; with the local frame e; associated to U,.
Then (@, V)0 = >, @™, This is still smooth after multiplying by p, and adding. The metric is
nonnegative because the standard metric is and p, > 0. It is hermitian and C'*°-linear because the
standard metric is as well. (Note: it doesn’t seem like the “unity” matters much here.)

Zpa fo,b)q Zpa (0, ))q pracplb
(b) If o =3, @e;, then Vo =3 po >, (d@?)e;. This is still C*°-linear in the vector part:

Vix =Y padix =Y pafdx =1 padx

and satisfies the Liebniz rule: (Note the partition of unity is important here.)

@):Zpazd(f([)i)(@ez Zpa<df ®(p—|—fz d(p ®ez> :(df)(Pl"FfV(p
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O

The conclusion is that, for a fixed hermitian vector bundle, there is an (infinite dimensional) affine space of
connections

A = {all connections on (E, ( , ))} = QY(M,End™(E))
given by the affine structure V <+ V° + A around some chosen origin V°. There is no distinguished “zero”
connection, we regard all connections equal.

2019/01/11

e A notation that will make more sense later, we write gg for the bundle EndSk(E) of skew-adjoint en-
domorphisms of E. So g C E® E* = End(E). Also write Q¥(E) to mean Q¥(M, E) for any bundle
E— M.

Definition 1.6. The curvature of a connection V on F is defined by:
For X,Y € Vect(M), ¢ € T'(E),

FYye:=(VxVy = VyVx —Vixy)) @

We sometimes just write F'.

Lemma 1.7. FV € Q%(gg)

Exercise 1.8. (the proof) Check, by computation, that
(1) F is tensorial in X
(2) Fisskew in X,Y (so that F' € Q2(...))
(3) F is tensorial in @, (so that Fx y is a bundle endomorphism, i.e. F' € Q*(End(E)) )
(4) Differentiate the metric compatibility equation to show that Fx y is skew adjoint.

Proof. (4) Since F is tensorial in XY, it suffices to compute at the point p. For vectors X,Y at a point p,
we can extend to vector fields with [X,Y], = 0.

(VxVyo,b) = X(Vye, ) — (Vyo,Vxi)
= XY (9, ¥) — X (9, Vy) = Y(9,Vx¥) + (¢, Vy Vx )
= (VxVy o, ) — (9, VyVx1) = XY(¢, ) — X (9, Vy) - Y(p, Vx)
(VyVxe, ) — (9, VxVy) =Y X(9, ) = Y (¢, Vx) — X(@, Vy)
= (Fxy e, V) + (9, Fxyb) = [X,Y]{9, ) — X(¢, Vy) — Y(9, Vx)
+Y{p, Vxb) + X (¢, Vy)) =0
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Remark. If (3) holds, then for p € M, let I, := {@ € T'(E) : @(p) = 0}. Then

T(E) =5 T(E)
I'E)/I,=E, = l l descends to a fiberwise linear map

E, —— E,

Definition 1.9. A gauge transformation v of E is an invertible vector bundle endomorphism, covering
the identity (fiber-preserving) and metric preserving.

So the diagram commutes,
E——E
M

for each p, v, : E, = E), is a complex linear isomorphism, and (y@,y) = (¢,1) for all sections.

Example 1.10. Let L — M be a complex line bundle. Then each real valued function f on M defines
a gauge transformation v = exp(if).

Definition 1.11. The gauge group G is the group, under composition, of gauge transformations =y :
E— FE.

Locally, on U around p € M, if we choose an orthonormal (ON) frame of E: {e; € T'(E)} (dual frame:
{e! € T(E*)}, then any 7 € G has the form

V(@) =Y Uyle) e @

where Uj; is a unitary-matrix-valued function on U. It follows that G is an infinite dimensional Lie group.

In addition to acting on sections of F, the gauge group also acts on the space of connections by
V=V
Vie=7V(r"o) 1)

Exercise 1.12. Verify that V7 is a connection.

Proof. 1t is clear that V7 maps into the right place. We need to check the Leibniz rule. Keep in mind the
v acts only on the E part. At a point p € M, v, : E, — E, is a linear map, so v,(f(p)@p) = f(0)7p(@p)-

VI(f@) =aV(y ' fo) =7V (v o) =v(df @y Te+ fV(v o)) =df @ e+ Ve

The intuition of gauge theory is to regard V and all of its transforms V? as equivalent.

Note that

ViVi=(yoVxoy ') o(yoVyony™)

=70VxVyony™!
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So curvature transforms as
F;y :’yoFX7yo’yfl. (2)

A connection on F induces connections on other bundles:
e On E®FEby Viedp) =V + ooV
e On E* by (Va)(e) = d (a(e)) — a(Ve)
e On gp C E® E* by combining these.

Definition 1.13. The connection V extends to the following chain
v v v
TE) =E)S OB S B S -
The operator dV, sometimes called the exterior covariant derivative, is uniquely determined by the
properties:
e dV=V onQE).
e dV(a®w)=da®@w+ (-1)PaAdVw for a € QP(M) and w € T(E).

Just like the ordinary d, we have a formula for what this looks like in any frame:

dv = Zei A Ve, (3)

where {e;} (and {e‘}) is a local (dual) frame.
Proof. See [Parker’s geometry primer] a

Note if {f;} is another local frame, write
ei =y Alf;
J

for some matrices A?(z). Then
e = (ATN;F
and so ’
D AVer =Y A AV amy,
=D AATDF AV =) AV,

I
2019/01/1}

Let E be a vector bundle over M. There are three levels of geometric structures on E:
e Metrics
e Covariant derivatives
e Second covariant derivatives. These decompose into
(i) the covariant Hessian (the symmetric part)

Viy =VxVy = Vp,y
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Note D is the Levi-Civita connection.
(ii) the curvature (the skew-symmetric part)

Fxy =VxVy =VyVx —V[xy]

On a local chart U, a general vector bundle E — M looks like U x C*. We can choose a basis of sections o
so that any section ¢ € I'(E) can be written, over U, as

P = Z P 0q.
o

Then, if 2 are local coordinates on U, and X = 3 X*-2: is a vector field on U,

Vxo = ZXiV% (¢%0a)

;Xl(

(03

de
ozt

Oo + (Pavaaia'a>

Definition 1.14. Define the connection 1-form of V in this trivialization {o,} by

Ve o,= ZA?aag
B

dx?

and

AP =" AL da'.

Then

Vxp=) | X' 8(9(2? o+ %: @A X s

«,t

:ZX {axi Ao ]Ua

which is the same as

Vo= (d+A4)e.
Here d applies the exterior derivative d individually to each component of the vector ¢. This depends on
our trivialization. It is the pullback of the standard connection on the trivial local bundle U x CF.

Example 1.15. As a special case, let £ — M be the tangent bundle TM — M, with a Riemannian
metric g. This of course leads to Riemannian geometry. Let’s write this out a little bit. For vector
fields X,Y on M, g(X,Y) defines a smooth function on M. In local coordinates we can plug in

9 9N_
I\ 9zt 0gi ) = i

Then we can write
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The Levi-Civita connection D defines a unique preferred connection associated to g, and gives a way of
differentiating tangent vector fields. One often sees the Christoffel symbols Dy, 9y, = F; 2 0i:
(DxY)' = X9 (9;Y" + T4, YF).

This is the connection form.
The Riemann curvature tensor R is defined as in definition so the notions of curvature align of
course.

1.2. Parallel Transport.

Definition 1.16. The choice of a connection V determines a way of parallel transporting fibers of F
along paths in M:

Fix a path p(t) in M from a = p(0) to b = p(1) with tangent vector T' = p(t). The parallel transport is
P E, — Ep(t),
the linear isomorphism defined by: Choose {o1,--- ,0%} of E,(0). There exists a unique solution of

Vroa(t) =0, 04(0)=0,, a=1,...,k.

P, (Z q)”‘aa) = Z ©%0q(t)

Then

so VP, =0.

Proof of existence € uniqueness. Locally, we have coordinates {z'} and basis {7,} (s0 00 = @(t)3(t)75).

Then 5
0= VTUa ZT” ( (Pa +Azy,(po¢( )) T

is a system of first-order ODE’s, which we can solve for small time ¢. |

We can also go backwards: Given P;, we can recover V by: given X and a € M, choose a path p(t) at a
with velocity X at t = 0. Then define

P (o(p(1)) — @ (p(0))

t
Thus Vx is “infinitesimal parallel transport”. (Check: this formula)

Vo= fi

Caution: In general, P; depends on the path p(t).

Lemma 1.17. For any connection,
(a) Parallel transport is an isometry.
(b) For all @ € T'(E),
el < [Vl

Exercise 1.18. Prove the lemma. Hint: Use metric compatibility on the following
(a) Let {04} be an ON basis of E,g) and 04(t) = Pi(0,). Then £ (o4 (t),05(t)) =
(b) dje[* =... , but also d(@, @) =
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Or for (b), one can use polar coordinates @ = |@|¢, so
2 2402 2 2 2
IVol” = [dlel["[¢]" + o|"[VE]" = [dle]]
(So we can see that it is exactly the angular part that drops out.)

Proof.
(a) Say the path has direction X. Then

%<C’a(t)v‘7ﬂ(t)> = (Vxoa(t), 05(t)) + (0, Vxop(t)) = 0.

(Vxo(t) = 0 by the definition of parallel transport.) Thus the metric value is constant along the path.
(b) We will show the non-polar proof.

20| (d|e]) = d|e]* = d(p, @) = 2(@, Vo) < 2|¢||Ve
dle| < |Ve|

(In both proofs we seem to skip over |@| = 0. But d|@| may not exist here.)

2019/01/16

1.3. Changing connections.

e Recall that a connection V on a vector bundle FE extends to
0 v 1 av 2 av

We also have an induced connection V"4(#) on the bundle End(E), the restriction to gg we call V¢, thinking
of gg C End(FE). (Eventually we will just use V and d for everything.) So we have
ve

g ve
2(gp) > Q' (gr) = Q(gr) — . (5)
Also recall that curvature FV € Q?(gg).

Lemma 1.19.
(a) (dV)? = FV in the sense that, for every w € QP(E), dVdVw = FY Aw (so is not a complex).
(b) AV'FY =0, this is called the (2" or differential) Bianchi identity.

Note. In (a), F¥ A w means that we wedge as forms, and also contract the gz and E parts, using (the
matrix multiplication) End(E) ® E — E. So in local coordinates, if we write

FY = Zngxi Adz? € Q*(gr) and w= Zwldxl € QP(E)
where each Fg is (a matrix) in gg, and each wy is (a vector) in F, then Fgwj is (a vector) in E, with
components 22:1 (Fg); (wr)?. Thus

FYw; =Y (Fywr)da' Adal Ada' € QPF2(E)




12 NOTES BY KESHAV SUTRAVE LAST UPDATED: JANUARY 20, 2023

In (b), note that we are using dV° on Q°(gg) and not d¥ on Q°*(E). In other words we are not saying
v\3
that (dV)" =0.

Exercise 1.20. (One proof) Locally around p € M, using what is called a “good frame” of T M.
Assuming some Riemannian geometry, this is a frame e; such that (Deiej)p =0, and

Fv:ZFgei/\ejGQQ(gE) and w:ZwleIEQp(E)

Then compute each part using formula H for d. (There may need to be a % correction factor.)

Proof. (a) By parallel transporting with the Levi-Civita connection D, we can get a good frame e; as
mentioned above. Then at p, De* = 0 and ;i =V;V; —V;V,.

(dv)zw = (Z et A V6i> (Z el A Ve]) w
= Zei A (De,€) N Ve,w + Zei ANel AV, Ve,w
=0

= Zei AN ej AN (VZV] — VJVZ) w
i<j

= ZF” ANw=FAw
1<j

e induced operator on En 1s given by the commutator
b) The induced dV® on End(E) is given by th
AV'F =[dV,F] =dY(dY)? - (aV)%dY = 0.
Why this is true:

Just for extra exposition, let’s look carefully how the induced V¢ and dV' are defined in lj Let
¢ € W (gp), 0 € Q(E), and let X be a vector field. Then we define V¢ € QF(gg) to act on o by

(V&®) (0) = Vx(@(0)) — ¢(Vxo) for the case k =1 =0
(V@) Ao =Vx(pAo)— @A (Vxo) in general.

(See the above note about the wedge.)
Now dV* is defined using the formula e’ A V.

(dvgq)) No= (e AVE @) Ao
=e'AVE(p) Ao
=e' AV, (pAa)—e" Ao A(V,,0)
=e' AV (pAo)— (—1D)foA(e' AV, 0)
=dV(eNo) = (D)o A (dV0)

(¢
(¢

In particular, for the curvature F, k = 2, so dV" is given by the commutator and
(AV'F)no=dY(FY Ao)— FY A (dVo)
=dV(dVdVe) —dVdV(dVe) =0
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Lemma 1.21.
(a) If v is a gauge transformation on E, then v acts on V and F by

VY =4Vy!
FY=qFy ' = (Ady)F
(b) For V' =V + A, where A € Q' (gg),
F'=F+dVA+[ANA] (6)
where [A A A] is the gg-valued 2-form defined by
A A Blxy = 5([Ax, Byl - [Ay, Bx]) = 5 (AxBy — By Ax — Ay Bx + By Ay).
In particular
[A A A]X’y = [AX7Ay} =AxAy — Ay Ax.

(Recall that Ax, By, etc. are like matrices.)

Exercise 1.22. Prove this, by computing with a good frame again. Part (a) was done before.

Proof. For part (a) see (1)) and (2).
ViVie = (Vi+ A4)(V; + 4;)¢
=ViVjo+ A V0 +Vi(4;0) + AiAje
=ViV;0+ AVi@ + (Vid)e + A;Vip + A Aj@
ViVie =V;Vip + A;jVi0 + (V;A) e + AiV0 + Aj A

Fi/j(p =Fijo + (%iAj - %in)(P + (A4 — AjA)e

The operator dV is the antisymmetrization of V. Note VA € NT*M ®g). O
1.4. Chern classes. Each hermitian vector bundle £ — M of rank k determines de Rham cohomology
classes

a(E)e HY (M) forl=1,---,k

as follows:

Definition 1.23. Choose a connection V on E. The I! chern class is
N/
a(E) = <217r> tr (FVY A---AFY) € Q' (M)

where FV A --- A FV is a gg-valued 2I-form.

Definition 1.24. The total chern class is
o(E) = det (Id +ZFV>
21
=1+ (E)+cE)+-- +c(B).

Remark. det(I + B) =Y trB*
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Lemma 1.25.
(a) The form ¢ (F) is closed, and
(b) its cohomology class is independent of V.

Exercise 1.26.
(a) (Check:) Figure out the correct statement of the fact:

d[det M (z)] = det M (x) - d(trM (z))
for a matrix valued function M (z). Use this with the Bianchi identity.

(b) For V' = V + A, consider V! = V + tA, with 0 < ¢ < 1. Then compute % F = dA, and the

li=o

following:
d
pn a(B,VY) =1-tr(d(AANFA---AF)) =duw,
t=0
(actually figure out the problem with the ¢ dependence) where wy = I-tr(AAF A--- A F), showing
that

c(E,V')=¢(E,V)+dn
forn = fol wy dt.

Example 1.27. A complex line bundle L — M has a single chern class ¢, (M) € H?(M).
Example 1.28. A rank 2 complex vector bundle E — M has ¢1(E) € H?(M) and c3(E) € HY(M).

2019/01/22

1.5. Some relation to physics.

Example 1.29. Let L be a complex line bundle over M = R'3 with a hermitian metric. Consider the

action functional )
(V) = 7/ |F|? dvol,,
2/
Then looking for critical points gives us

dx F=0 Vacuum Maxwell Equations
dF =0 2nd Bianchi identity

Recall the Hodge star operator x on A\ T*M.

/a/\*a:/ |a|? dvol, (7)
M M

Example 1.30. Now include a current in the situation above. In physics, this is

0 o)
(p,d) = (p; J1, J2, J3) <> ot Z‘L%l

So we can say current is a vector field on M. But the law of charge conservation implies the continuity
equation:

% +divJ =0 (8)
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Instead, consider the current 3-form
j = —pdaxdydz + J1dtdydz — Jodtdadz + Jsdtdzdy
Then becomes
dj =0 9)

Now let’s put this current into (the) action:

) 1 .
©(V.g) =5 [ PP+ [ ina
M M

Then, (looking for critical points), for a fixed j and varying connection (V — V +tB, A — A+ B, for
B € QY(M)), we find the Euler Lagrange equations:

0=0559(V,7) :/ (F,dB)+j A B
M

= / (d*F, B) — (xj, B)
M

dxF =3y

= d'F—%j=0 = . .
dFF =0 Bianchi

which are Maxwell’s equations with source. (d* is defined to be the L? adjoint of d.)

15

Remark.
(1) It is not clear yet that [j A A is well defined (gauge invariant?). But we know that j is a closed
3-form and H*(R3) = 0 so j = dk for some k. Then

/j/\A:/dk/\A:—/k/\dA:—/k/\F

Oz/d(k—k’)/\A:—/(k—k’)/\F

so [k A F is independent of k.
(2) The current j can be taken as a given, or regarded as a variable.

is well defined.
Also note: If j = dk/,

Special Case

Consider a moving particle with world line . There is an associated current, the distribution 1-form j,.

By distribution we mean j, € [Q'(M)]*. As a quick example, recall that the ¢ “function” is a C°°(M)

distribution defined by d,(f) = f(x).

The associated current is defined by

j,y(a):/a Va € QY (M).

. 1
wd.5) =5 [P+ [ 4
;

Then



16 NOTES BY KESHAV SUTRAVE LAST UPDATED: JANUARY 20, 2023
This last integral is related to holonomy (= parallel transport).

Recall: For E — M with local trivialization {01, -+ ,0,} € I'(E|y). Then ¢ € T'(Ely) is @ = > ()04

and Vg 00 =) AP o5, with A? da’, a (skew-hermitian) matrix-valued 1-form.

Then the holonomy along a path v is H, : E, — E, defined by H.(t)@o = ¢@(t). For ¢(t) a solution,

d(pa o 1
0=V5o=>_ (dt + AjsY (Pﬂ> Oa

d(pa o 1
For E a complex line bundle, we can write A as i A for a real valued 1-form A. Then becomes
¢ = —iA(%)e

= o(t) =L tog =HY ()0

Hence ; 2 2
. . i . i
elq>(v7]’7) —e2 fIVI ‘Fl 77‘-[—}/‘4 — H’ye§ f]\{ |F|

Example 1.31. Examples and [1.30] immediately generalize to E — M", a rank k complex vector

bundle. )
(V) = 5/ [F]2+(j,A)  where j € Q};(gp)
M

The E-L equations are the same
*xdx F'=7 E-Leq
dF =0 Bianchi

These are Yang-Mills equation with a current.

Note (to self). Maybe this is the one Noether theorem? First, fix a connection V°. Then, if given a
connection V = V%4 A and a gauge transformation v, we have another connection, written in two ways

V' =yVy ' =v0+ AL
What is A’? Acting on a section ¢ € I'(E),
Vie=v(V'+4)7"¢
=7V o) + Ay e
=V +y(VOy Do +7477 1o
=V% - (Vo) te +y47 e
— A=Ay = (VO

[need to finish this, connect the above with below—]
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Running the above backwards, assuming gauge invariance of the action gives [jAA= [j A (A+ dB)
for any B [is this what gauge inv gives? see above calculation]. This implies

o:/ j/\dB:—/ dj A B
M M

for any B, i.e. that dj = O[is this true, actually?], the local conservation of charge.

@: How can we interpret a continuity equation for j7
Again, current is related to holonomy, which satisfies

H(t) = —A(t)H(t),
the solution of which is
H(t) = Pel 4 (the “path-ordered exponential”)
ie.
A;(t) = path in the Lie algebra of U(k)
= path in {left-invariant vector fields}

and
H(t) = flow of time-dependent left-invariant vector field on U (k)
found by integrating

H(t)=1 —/0 H(s) L A(s)ds

=1- /OtA(s)ds + /Ot /Ot1 A(s)H(s")dsds" + - -

[For a better recount of parallel transport and path-ordering, see the document handed out in class (very
good explanation, for Riemannian case), or Baez & Muniain - Gauge Fields, Knots and Gravity]

2019/01/25

Definition 1.32. An observable is a function f : A — R or C that is gauge-invariant:

f(V)=f(gVg™") Vgeg
so that it descends to a function on B = A/G.

Recall the effects of g € G
(i) Viog Vgt
(iil) F—~gF g !

Definition 1.33. For a path «(t), Parallel transport P, : E, — E,

Py g(g)Pyg(p) ™"

Note Vis; = 0 < (gV49 1)(gs;) = 0. In particular, if v is actually a loop in M, then parallel
transport around -y is a unitary endomorphism called Holonomy around -y

H,(p) € U(K) C End(E,)
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Example 1.34.
f(v) =/ |F'|*dvol,,
M
satisfies |[gFg~1|? = |F|2.

Example 1.35. Let M¢(k) = {k X k complex matrices}. An invariant polynomial is a function on Mg
such that

e 7(A) is a polynomial in A;;
o 7(gAg~!) = 7(A) for all g € U(k)

One can prove that the ring of invariant polynomials is generated by
1,7 (A) = tr(A), -, 7e(A) = tr(A").
Hence for each loop 7 in M and p € v,
Fen(V) = Tu(Ho () = tr((H,)")

is G-invariant = f is an observable.

Remark (on QFT). For a gauge theory
(B ()
| (1)
(M, g)
with action ®(V) = 1 [, |F|?. Each observable f : B — R has expectation
[ fei har1FIPqv
s et Iu IFIPqy

Even though B is infinite dimensional and there is no such dV, it still works for some reason if you are
a physicist.

()

Remark. It is a theorem that if V, V' are connections with fi (V) = fi (V') for every fi ., then V
and V' are gauge equivalent. Thus {fj - : v is any loop} distinguish the points of B.

1.6. Flat connections.

Example 1.36. Returning to the gauge theory setup where E is a complex, rank k and M is
compact, connected and Riemannian, and where ®(V) = 3 [, |F|*dvoly. Note that ®(V) > 0 with
equality if and only if F = 0.

Definition 1.37. A connection V is flat if F = 0. (= ¢.V is flat for all g € G since F9-V = gFg~! =
0.) Then

Mgay = {flat connections V}/g

is one component of the moduli space of Yang-Mills connections.
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Remark. Mg,y may not be connected.

Remark. Often there are no flat connections. Note that if F' =0, then det(I — ;= F) =1 but

det(I — %F) =1+ 1 (B)+co(BE) + -
= all chern classes ¢;(E) =0

Thus if F is a bundle with any nonzero chern class, then E has no flat connections.

Definition 1.38. A pair (F, V) is called locally trivial if there exists a parallel local frame, i.e. each
point p € M has a local frame s1,...,s; € T(E|y) and Vs; = 0 for each i.

This means locally we can do calculations on a trivialization using 0, the trivial connection, in place of V.

Example 1.39 (Mobius band).

E=S'xR E=10,27r] xR
| = |
Sl Sl

with fibers Fy and Ea, identified by (0,z) ~ (27, —x).
The connection V = % has s(f) = (0, const.) as a parallel section, and F' = 0. = F is locally flat,
but not globally trivial, with holonomy — Id around S*.

2019/01,/28

Example 1.40. On E = S' x C over M = S, the trivial complex line bundle, define the connection
V =d+ A where A = if(0)df, a 1 x 1 skew-hermitian matrix. Let’s take f(8) = ¢ € R (constant).
Then F' = 0 and a section s is parallel iff

Os .
Vs = {89 + zcs(é))} dé = 0.

So, 5(8) = Ce~ Y

Hence the holonomy around S? is
HV“ _ eQTric

So H =1d iff ¢ € Z. Thus there exist nonzero sections s with Vs =0 iff ¢ € Z.

Lemma 1.41.
(a) (E,V) is locally trivial <= V is flat
(b) If E admits a flat connection, then

{Flat connections}  Hom(m M, U (k))
Mgat = =

g conj.

Proof.
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(a) If F is locally trivial, there is a local frame sy, ..., s such that V;s; = 0 for all ¢,1. Then
0= Vivjsl — VjVisl = Fijsl — =0

Now suppose F' = 0.

Fix p € M, local coordinates z* around p, and and ON basis s1(0), ..., sx(0) of E,. Extend each section
to a neighborhood of p by parallel transport in the radial direction:

In coordinates (r,6) on [0,¢] x S"~!, we have V,s; = 0 locally. In particular (V;s;), = 0 for all i, j.
Hence at (R, 0),

R
(Vjsi)(r0) = (Visi)p +/ V,(Vjs;)dr
0

=0+ / Fr’j S; + Vj (VTS)
- ——

=0 =0

So V;s; =0 (locally).

Note: We used that V,.((V;s:)!s;) = (0, (V;s:)))s1+(V;8:) Vs for the use of FTC, but again V,.s; = 0.
(b) If F =0, then @ implies the holonomy around all small loops is the identity. Fix p € M and consider

loops \ starting at p (i.e. A: S* — M and \(1) = p).

Any homotopy can be broken down into a sequence of homotopies that are each supported in small

neighborhoods. Thus H, depends only on the homotopy class [A\] € 71 (M, p), and in particular H, = Id

for contractible loops A.

Changing the basepoint (from p to ¢) results in conjugation: Pick a path u from ¢ to p. Then

Hy-ap = Hp HoaH, = (Hu)_lfHAHu

Thus H, mod conjugacy depends only on [A] € 71 M.
Conversely, if M — M is the universal cover, take V. =d on E — M and mod out by m; M. (What
does this mean?)

O

Example 1.42. If M is simply-connected, then Hom(m M, U(k)) = 1, and so all flat connections are
gauge equivalent to the trivial connection on the trivial bundle.

{pt} 1if E is a trivial bundle

1%} otherwise

= Miat :{

Background from linear algebra

Lemma 1.43. Any A € U(k) can be diagonalized by a unitary change of basis, i.e. there is a B € U(k)
such that BAB~! = D, where _
et 0
. Ai€R
0 ek

and B is unique up to reordering basis.
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Let TF = {diag (e, -+ ,e) : \; e R} = S x --- x §' C U(k) be the maximal torus. The permutation
group S acts on T%. Then Lemma tells us, as U(k) acts on itself by conjugation, each orbit intersects
T* a finite number of times in exactly an orbit of S on T*.

Example 1.44. For M = S* and by Lemma [1.41]

{flat connections on E Tonk by S'V}  Hom (mM,U(k)) Hom(Z,U(k)) U(k) T7k
g N conj. N conj. ~ conj. Sy

Mﬂat =

(Any homomorphism Z — U (k) is determined by the image of 1.)
In particular,

(i) For U(1) = S*, Mga =2 St = {e’?}. (Any V¢ is gauge equivalent.)
(i) For U(2), Mga; = T?/Zy. (Here the action is not free. The matrix diag(e’*,e?*) acts as the
identity. Mg, is an orbifold.)

Example 1.45. Take M = RP? = 53/Z2. We have m; RP3 = Z?. Then

Moy, = Hom(ZQ,.U(Q)) _ {dlag(:l:l.,:lzl)} _ {diag(£1,£1)} — 3 points.
conj. conj. Zs

2019/02/01

1.7. Reducible connections.

This is another special type of connection.

Definition 1.46. A connection V on E — M is reducible if there exists a nonzero section s € I'(E)
such that Vs = 0.

Note. d|s|* = d(s,s) = 2(s, Vs). So Vs =0 = |s|> = constant # 0.

Lemma 1.47. For a rank k complex vector bundle E — M, the following are equivalent

(a) E admits a reducible connection V.
(b) EXC®E' for some rank k — 1 vector bundle E' (“E splits off a line”).
(c) The top chern class cx(E) = 0 in H**(M).

Proof. (a) = (b):
Given V, and a section s # 0 with Vs = 0, define a bundle map ¢

CxM —2—> FE

N el =xs@)
M
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This is injective and locally trivial = the image of ¢ is a trivial complex line bundle (a subbundle of E).
Now set

E'={e€E: (es) =0}
After local triviality, this is a rank & — 1 complex vector bundle. Furthermore, any o € I'(E’) is orthogonal
to s, so

0=d(o,s) = (Va,s) + (0, Vs)
T

= Vxo e ['(F).
Hence, under E = C @ E’ the connection splits:

(6w = ) 12

(b) = (a):
Any connection V’ on E’ extends to a connection V on E using (12)), with a section s = (1,0) that satisfies
Vs = 0, making V reducible.

(b) = (c):
The top chern class ¢, (F) is represented by

C(E7V):det<.[+2ZF) :1+Cl+...+ck
™

and its 2k-form part

cr(E, V) = det (;ﬁF> —0 by

(c) = (b):
By bundle theory (see Milnor & Stasheff), the top chern class = the euler class, and the euler class e(E) =
0 <= F admits a nowhere zero section. (e(F) € H™F(M).) O

1.8. More examples of actions.

So far our actions have only involved |F|*. Let’s bring in a section ¢ € I'(E). (A Higgs field?) First, some
false starts:
o Let O(¢) = fM\(p|2dvolg. This yields: @ = 0 as the only field equation.
2
e In an attempt to get the critical point away from ¢ = 0, let (@) = / <|(p\2 — 1) dvoly. The field
M

equations are either |(p\2 =1 or @ = 0. In the nonzero case, then E splits off as C & E’, where the line
is C = Co, and @ is gauge equivalent to (1,0) € I'(E). This is not interesting by itself (more on this
later).

Example 1.48. Let D : T'(E) — I'(E’) be a 1% order differential operator, and consider

1
®(e) =5 /M |De|* >0



GAUGE THEORY, TOM PARKER’S CLASS
The field equations: for P € C°(E),

(D(@ + 1), D(o + 1))

d
t=0

Todt

t=0
~ [ R (Do.0%) = [ Re (D" Do)
M M
where D* is the formal L? adjoint of D. So the field equation is
D*De =0
But if this is satisfied, then
0= [ (0'Do.6) = [ Dol — Do =0
M M

assuming OM = @ (or @ — 0 at co quickly enough). Therefore all critical points of ® are absolute
minima.

23

Example 1.49. As a special case of the above, take
D=d"+d: Q% — Qb e bt
or D=d"+d:D(APT*M) =T (AP7'T*M & A\PT'T*M)

1 1 1
a(w) = 5 /M |Duwf? = 5/M dw + d*wf? = 5/M duwf? + [d*w]?

The field equations give an absolute minimum

dw =0 <— dw =0 since d* = £ x dx
d*fw =0 d(*w) =0

Then

1.9. Hodge-de Rham Theory and Harmonic Forms.

Definition 1.50. The Hodge laplacian is the operator on p-forms: A = d*d + dd*. Again, recall that
d* is the L? adjoint of d.

Definition 1.51. A p-form w is called harmonic if dw = d*w = 0, or equivalently Aw = (d*d+dd*)w =
0.

Note (to self). Here is a small proof. The forward direction is obvious. Assume Aw =0 . Then

0= (Aw,w)2 = /(dd*w,w} + (0" dw, w) = /|d*w|2 + |dw]* >0

implies both |d*w| and |dw| are identically 0 everywhere.

Theorem 1.52 (Hodge-de Rham). Let (M, g) be a compact Riemannian manifold. Then there is an
L2-orthogonal decomposition
0] p—1 * +1
Qb =7 ©dOR T @ A0k (13)
where P = {harmonic p-forms} is finite-dimensional.
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Proof. The existence is by some analysis. The spaces are perpendicular since
| s = [ (adap)~ o0
M =0
/ (h,da) / (d*h,a) =
M M =0
[ nars) = [ (anp)=o
M M =0

(Il
|
2019/02/06
Corollary 1.53. FEach de Rham cohomology class has a unique harmonic representative. Thus

AP = HE (M3 R) (14)
Proof. Write the representative of [w] € HP(M) as

w=h+da+d*B.
But

0=dw=dh+dda+dd*g =dd*s
0= (ad*6.5) = [ 14"
M

= d*8=0
Sow=h+da = [h] =[w—dao] = [w].
Now if h and k' are two harmonic forms representing [w], then [h — h'] = 0, i.e. h —h’ = dv for some
v € QP7'. But then by decomposition (13), h — h' = 0. O

Generalization:

Recall a connection on £ — M gives
-1 av av +1

= QPN E) — QP(E) — QPTH(E) — - - -

This is not a complex (dVdV # 0), but we can still define harmonic p-forms
AL J(E) :={weQ(E) : d"w=0and (d¥)"w =0}
and cohomology
kerdV : QP(E) — QPH1(E)
imdV : QP-1(E) — QP(FE)
Then we have the generalized version of the Hodge Theorem:
jfv”,g(E) ~ HP(M, E)

but this is not topological, it depends on V. However, we still have:

HP(M,E) :=
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Theorem 1.54. If (M, g) is closed, then %”VP’Q(E) is finite-dimensional for all V and g, and the euler

characteristic
dim M

X(M,E) = " (=1)" dim H”(M, E)
0
depends only on M, E.

To calculate x (M, E) use an “index theorem”.

Prototype: For a 2-manifold M
x(M, E) = dim¢ H*(M, E) — dim¢ H>' (M, E)

1.10. Riemann-Roch Theorem.

For a rank k vector bundle over a genus g 2-manifold,
X(M, E) = c1(E)[M] +k(1 - g)
——
€z
In higher dimensions, the Hirzebruch index theorem and the Atiyah-Singer index theorem tell us that

x(M, E) = a specific polynomial P in: chern classes and Pontryagin classes of M, and chern classes of
E. This implies that P € H*(M) and x(M, E) = P[M].

Remark. For 3-dimensions, all chern classes vanish.
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2. PRINCIPAL BUNDLES
In general, gauge theories are built from a Lie group G and a representation p of G. The roadmap is:

Lie group G ~ Principal G-bundle ¥ Gauge Theory
2.1. Beginning with principal bundles.

Definition 2.1. Fix a manifold M and Lie group G. A principal G—bundle over M is a smooth map
P 5 M from a manifold P with an action of G on P, such that

(i) G acts freely on P by “right multiplication™

P pg = Ry(p)
Note Ry, = RyRy. (Free action: For each g € G, if there is a p € P with pg~! = p, then g is the
identity.)
(i) M = P/G
(iii) P is locally trivial: For all z € M, there is a neighborhood U and a fiber-preserving G-equivariant
diffeomorphism ¢ : 77 H(U) =5 U x G. (G-equivariant: @(pg~') = @(p)-g~*.)

Note. A principal bundle can also be described as a fiber bundle with structure group and fiber both
“equal” to G (see Nash & Sen). One should still add the locally trivial property to this, to see that
the structure group G acts on the fiber G naturally by multiplication (on the right, by the inverse if
needed). There are other bundles with fiber equal to G, but which are not principal bundles, see C(P)
below.

Example 2.2. The trivial G—bundle M x G — M.

Example 2.3 (Hopf fibration). S = U(1) acts on the unit sphere $?"*! C C by coordinate multiplica-

tion e (2!, 2T = (€21 ... 2*1). This action is free, with disjoint orbits all diffeomorphic
to S'. Then

P = SQn—i—l

M =CP"

is a principal S'-bundle. (e.g. S% — S%? = CP?)

Example 2.4. G = SU(2) = {unit quaternions} = S3 (right) acts on the unit sphere S4"+3 C H**+1.
Thus

P = S4n+3
M =HP"

is a principal SU(2)-bundle. (e.g. S7 — S* is a non-trivial SU(2)-bundle over S*)

2019/02/08
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Main example of a principal bundle

For a Riemannian manifold (M",g), we have the notion of an ON (orthonormal) frame at p € M, e =
{e1,-- ,en}, which gives an isometry T,M = R". Note any two such frames at p are related by some unique
g € O(n).

Definition 2.5. The O(n) frame bundle of (M, g) is
Fr(M)={(p,e) : pe M,e={e1, - ,e,} ON frame at p}
with the obvious projection to M 7(p,e) = p. The group G = O(n) acts by (p,e).g~* = (p, ge)

Lemma 2.6. Fr(M) is a principal O(n) bundle.

Proof. The above action is

o free: (p,ge) = (p,e) = g=1id
e fiber-preserving
e transitive on each fiber: for each (p,e), (p,€’), there is a g € O(n) such that ge = ¢’
e locally trivial: Given p € M, take a coordinate neighborhood {z'} on U. Then {vq; = %} are linearly

independent vector fields. By Gram-Schmidt, we can get vector fields e = {e1, -+ ,e,}, ON at each

q € U. Then set

UxG—— Fr(M)|,
U
This is an equivariant isomorphism, making Fr(M) a manifold.
O

Example 2.7. If (M", g) is oriented, we can consider positively oriented ON frames e = {e1,- - ,en}.

We have Fr™ (M) C Fr(M) a subbundle over M, and a principal SO(n)—bundle.

Example 2.8. For a manifold M™ (with no metric), a (general) frame at p € M is a linearly independent
set e ={eq, - ,e,} <= T,M = R". This leads to a GL(n) frame bundle Fr(M) — M

Remark. Adding geometric structure allows us to “reduce” the frame bundle

orient metric

Frt (M) —— Fr(M) — Fr(M)
\ M

Example 2.9. For a rank k complex vector bundle F — M with hermitian metric ( , ), we have the
associated frame bundle is a principal U(k)-bundle

Fr(E) :={(p,e) : pe M,e=(e1,---,e,), ON basis of E,, i.e. E, = ck}
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Remark. A local framing of E is a section of Fr(E) over some U C M. We can always construct these
as in the proof of Lemma |2.6
Note that a principal G-bundle admits a global section if and only if P is trivial.

Example 2.10. Let (M*, g) be a space-time manifold:

-1
1
g~ 1 =90
1
A frame at p is a basis {eg, €1, e2,e3} of T, M such that

<€Z‘, €j> =0

leo]2=—-1 <= an isometry T,M = R = (R?, gy)
lej]? =1

2.2. Associated Vector Bundles.

Fix a Lie group GG. Consider a representation p of G on a vector space V, i.e.

p: G — End(V) such that p(gh) = p(g)p(h)

Definition 2.11. Given a principal G-bundle P — M and a representation p of G on a vector space
V. The associated vector bundle is a bundle E — M defined by

{(p,v) € P x V}
(p,v) ~ (pg=1, p(g)v)

E=Px,V=

Exercise 2.12. Show
I'(E) = {G-equivariant maps P — V'} ( ={@:P=V : opg ") =pg)ep)} )

Proof. We will write [p,v] to denote a point in E (the equivalence class of (p,v)).

Let @ : P — V be equivariant. Define a map o : M — E by

o(z) = [p, @(p)] (15)
where p is any point in the fiber over x of P — M. This is well defined since, if we use a different point in
the fiber pg—!, then

g~ @(pg™H)] = [pg ", p(9)@(p)] = [p, @ ()]

The projection of E — M is defined by using the map P =+ M, i.e. [(p,v)] — m(p) = x, so our ¢ is a section
of E, by our choice of p over x.

Now let 0 € T'(E). Then define ¢ : P — V to be the map which makes true. That is, to define ¢(p),
let z = 7(p). Then o(x) = [q,w] for some ¢, w. Because the action of G is free and transitive on the fiber
over z, there is a unique g such that gqg~! = p. Then o(x) = [¢,w] = [p, p(g)w] is of the form of . This
is G-equivariant by

g~ @(pg™ )] = o(z) = [p, @(p)] = [pg ™", p(9) 0 (p)]
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which implies @(pg~") = p(g)@(p). O

Exercise 2.13. For a complex rank k vector bundle £ — M with (, ). Show that E is associated to
the standard representation of its frame bundle, i.e. that

E =TFr(E) x, C* where p : U(k) — End(C¥) is the “standard representation”

Example 2.14. Fix (M", g), which gives us Fr(M), a principal O(n)-bundle.

(1) With the standard representation p : O(n) — End(RR™), we have
Fr(M) x,R"=TM
(2) With the dual representation p* : O(n) — End((R™)*) given by
(r*(g)a)v = alp(g)v) for a € (R™)", v e R",
we have
Fr(M) x,- (R")* =T"M
(3) With the representation pj : O(n) — End (/\k(IR")*) given by

pr(g)(ar A=+ ANag) = p*(g)ar A--- A p*(g)a,

we have
k k

Fr(M) x,: AR™)* = \T*M
Hence a differential k-form corresponds to an equivariant map Fr(M) — A"(R")*, (by exercise
2.19)

2019/02/11

So given a principal G bundle P, and a representation p of G on V, we get an associated vector bundle
E = P x,V. More generally,

Definition 2.15. If G acts on a space X, a: G x X — X, we get an associated fiber bundle
{(p,x) €e P x X}
(p,z) ~ (pg~*, o(g)-x)
with fiber homeomorphic to X. The transition functions will be a applied to the transition functions
for P.

Px,X =

Proposition 2.16. The construction above is a smooth fiber bundle (as long as « is smooth), with
transition functions given by applying « to the transition functions for P.

Proof. (Check: proof) O

The following constructions are important in gauge theory:
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Definition 2.17. The Lie group G acts on G itself by conjugation C":
C:GxG—G by(g,h)— Cyh)=ghg™* (16)

The associated bundle, called the Adjoint bundle, C¢(P) = P x¢ G is a bundle whose fibers are copies
of G. However C(P) is not a principal G-bundle (if P is nontrivial). We have (see exercise [2.12)

P(Ca(P))={s: P =G : s(pg™") = Cy(s(p)) = gs(p)g~ '} (17)
The map s(p) = e is a well-defined section, so I'(Ad(P)) # 0. Note also that we can multiply sections;
I'(Ad(P)) is a group.

Definition 2.18. The gauge group G of P is the group of all bundle automorphisms covering the
identity on M, and such that @(pg~!) = @(p)g~! forallp € P,g € G.

p—*,p

N/

Exercise 2.19. The gauge group G = I'(Ad(P)) (as groups) by @, <+ s, where @4(p) =p-s(p)~!

Proof. If s : P — G is an equivariant map as in , then define @4(p) = p- s(p)~! as above. Then @,
is a bundle map, since it is defined using the G action on P. It is invertible since we can multiply by s(p)
everywhere. Then we check

1

1 1

es(pg™ ) =pg ts(pg™ )t =pg H(gsp)g™) T =pg tgs(p) 9T = ps(p) g7 = @s(p)g T
On the other hand, if we have @ : P — P, then @(p) lies in the same fiber as p, so there is a unique s(p) € G
such that @(p) = p- s(p)~!. This defines a map s : P — G. Using the local triviality to work in U x G, we
can see that @ is smooth implies that s is smooth. Now we figure out what s(pg~—1!) is:

pg 'stpg ") =@lpg™') = o)y =ps(p)”

Since the action is free, we have s(pg=!) = gs(p)g—'.

1 -1

g =pg (gs(p)g™)

(Check: explain why the constructed maps @5 and s are smooth.)

We also have

(@1hs)(p) = @s(@e(p)) = @s(pt(p) ") = @s(p)t(p) " =ps~'t~" = p(ts) ™"

i.e. the assignment is a group homomorphism. O

Note. G is not Map(M, G), unless P is the trivial bundle P = M x G.

Definition 2.20. For each g € G, Cy : G — G preserves the identity e in G. So we take its derivative
(Cg)ue : TG = T.G
=Ad(g): g—g

This is the Adjoint representation G — GL(g) (invertible elements of End(g)). The associated vector
bundle is called the adjoint bundle

ad(P) = P Xaa 9
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Note (about ad). Say G < GL,, is some matrix Lie group. Then for g, h € G, conjugation is
Cy(h) = ghg™ (18)

where this is explicitly matrix multiplication. The tangent space to the identity g is a subspace of
T1GL, = My xn. So for a vector Y € g, we can apply the derivative of conjugation at I, Ady : g — g.
Explicitly, differentiating with respect to h gives

Ady(Y) = (Cg)ea(Y) = gYg ™" (19)

where this last expression is matrix multiplication again, since Y is an n X n matrix.

Now the assignment g — Ad, is actually a Lie group homomorphism
Ad: G — GL(g) = {g — g, invertible linear}.

The identity I € G is sent to (X — IXI~! = X), the identity of GL(g).
Taking the derivative of this new map,

ad := (Ad). s : g — Lie(GL(g)) = End(g) = {g — g, linear}
X —adx
Explicitly, we can differentiate for a path g(t) € G with g(0) = I and ¢'(0) = X € g.
adx(Y)=¢'Yg ' +9Y(g7")
- XY —YX = [X,Y].

Recall that the Lie algebra structure on End(V) is defined using this explicit bracket. It is in fact true
in general (for abstract Lie groups/algebras) that adx (Y) = [X, Y], using the Lie bracket on g.

2.3. Connections on principal bundles.

The set up is a principal bundle P = M.

The idea of a connection is one of “infinitesimal parallel transport”. One needs to figure out how to drag
elements of GG across fibers in P, in a way that is “parallel” to the direction of M.

For a point in P, locally (z, g), we can move in the fiber over z, changing g only. This is “vertical” movement,
which is a notion invariant of trivialization. If we try to move “horizontally” (change = but keep g constant),
then this will not be invariant: Under different trivializations, the same motion may not keep g constant. To
define a connection, we will choose a direction to be called horizontal. We will start by using the fiberwise
action of G to move vertically.

Consider the G-action

GxP—P
(9,p) = pg~" = Ry(p).

The derivative gives a linear map for each g € G

(Rg)* : TpP — Tpg—lp
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and for each p € P, a linear injection
ip: TG — T,P
or i,:g—1T,P withmi,=0

i.e. vertical movement.

Definition 2.21. The vertical subspace of T), P is

Vp = ker(dm), = image i, C T,P
= tangent space of G-orbit through p.

Each A € g has an associated fundamental (vertical) vector field on P.

(A")(p) = ip(A)

(Check: I think I remember that fundamental vector fields are (related to) left-invariant vector fields - look
for some exercise in Tu.)

Definition 2.22. A connection on P is a choice of horizontal subbundle H C TP which is

e horizontal: H, &V, = T, P, for each p € P
e equivariant: Hy,—1 = (Rg).H,

So with a connection defined, at each p € P we have projections
v:T,P =V,
h:T,P— H,

The composition
1

T,P 2V, 2 g
is a g-valued 1-form on P.

Definition 2.23. A connection form is a g-valued 1-form w on P such that

(1) wA*)=A (ie w(ip(A)) =Aforall Aeg)
(2) (Ry)*w = (Adg)w forall g€ G.

Lemma 2.24. Definitions [2.29 and[2.23 are equivalent by H, = ker wy,.

This should be interpreted as: w is the horizontal projection (projection onto V following the lines of H).

Proof. (cited Kobayashi & Nomizu, vol.1 p.64) O

Exercise 2.25. Fix a connection w. Show that another g-valued 1-form w is a connection form if and
only if w’ = w + 7 for some n € O (P) where

QG(P) :={neQ(P,g) : (Ry)'n=(Adg)y, and n(A*)=0 VAc g}

Consequences
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The choice of connection w (or H),) determines:

1. An exterior covariant derivative D : Q% (P) — Q% (P) by
Dn(XOa e 7Xp) = dn(hX07 T hXP)

Note this is equal to 0 if any X; is vertical.

2. The curvature of w is the g-valued 2-form

Q =Dw € Q4(P)

Proposition 2.26.
(a) Form, [Check: should have some horizontal or basic condition]

Dy = dn+ [n Aw]

(i-e- Dp(X,Y) = dn+ %([U(X)M(Y)] + [w(X), U(Y)]))

(b) (Structure Equation)
Q=dw+wAw

(¢) If X, Y are horizontal,

QX,Y) = f%w([X,Y])

Proof. (cited Kobayashi & Nomizu)
For note: each vector field X on M has a horizontal lift X on P, the unique X € H such that 7, X = X.
Then

UR.7) =~ Lu(X. 7)) =~ Lo((X.7)

So, curvature is a measure of the failure of H C TP to be a distribution (i.e. closed under [, ]). O

3. The differential Bianchi identity

DQ=0 €QL(P)
4. For each path v : [a,b] = M, we get a horizontal lift 7 : [a,b] — P to p € P, with 7(p) = y(a), such that

(a) my =1, (lifts 7)
(b) 7' € H for all ¢, (moves horizontally)

Lemma 2.27. For each such vy, there exists a unique horizontal lift 5.

Proof. First choose some lift o(t) of v, so 7o = 7. Now we write the desired lift as

Y(t) = a(t)g(t)
Then the horizontal condition ¥' € H = ker w iff

/

g =—w(o')g
This is an ODE, so there exists a unique solution ¢(¢) for ¥(a) = p. O
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A horizontal lift is completely analogous to parallel transport.

5. We get an induced parallel transport on every associated vector bundle &' = P x, V:

Fix a starting point ¢ € M and an initial vector £(0) € E,, which we write as (p,v). Given a path ~(¢) in
M starting at ¢, define

§(t) = (3(2),v)
a section of E over v(t). Then the parallel transport map is P;J(t) t Eya) = By defined by

P)€(0) = &(%)
If we choose a different representation (p,v) — (pg~!, p(g)v) we have ¢ — £g~! [Check: prove this].

6. From parallel transport, we get a covariant derivative on E by

(VX)) = ¢ (( ;’@))15(0) —

for £ e T'(E), X € T,M, where «(t) is a curve in M starting at ¢ with initial velocity X.

Exercise 2.28. This is independent of +, linear in £, C'"*°-linear in X. Thus V is a connection on E.

Going backwards

Given a hermitian vector bundle E — M, we let P = Fr(E).

Lemma 2.29. A connection on E is equivalent to a horizontal subspace (a connection on P).

Proof. If we have a connection on E and p = {ey, - ,ex} € Fr(E) an ON frame at ¢ = w(p) € M, for each
vector X € T, M, choose a path in M continuing X. Parallel transport defines ON sections {e; (), - ,ex()}
along ~. This gives us a path p(¢) = {e;} in P = Fr(E). Then the vector V = p’(0) is what we should call
horizontal. Set

H,={V €T,P obtained in this way}

Then we check that Hy, M V.

Also p(t)g~! is another such path,
pg~' — (Rg)*Hp
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3. GAUGE THEORY - A NEW VIEWPOINT
3.1. Potentials.

Definition 3.1. A (classical) gauge theory consists of:

(1) A Lie group G and some representations pi,---,p; of G on Vq,- -+, V; respectively
(2) A manifold M with a (pseudo-) Riemannian metric g

(3) A principal G-bundle P = M

(4) An action functional (G-invariant)

1

@(V7(p17"' 1(pl): 5/ $<Fv»(pla"' 7(Plav(.01a"‘ 7V(Pl)dV019
M

where @; € I'(E;), E; = P x,, V; are sections, and V is a connection on P.
The critical points of ® : AXT'(E;) x---xT'(E;) — R are solutions of the Euler-Lagrange equations
(the “field equations”).

Example 3.2. Let G = U(k) with the standard representation p : U(k) — GL(C*), = E = P x,CF,
the action

1 2
(Y, ) = 5/ |EY|" + Vol +ml|e|?
M
(which has a mass term, m € R). The field equations are
(AV)*F = j, current
(V*V+m)p =0

where jo () = Re (V@, p(n)e).
Note the second equation gives us that either m < 0 or @ = 0.

2019/02/13

Example 3.3. Let’s play with the potential (the action) in an effort to move the minimum away from
¢ =0. )
2 2 2
(V,0) = 5/ [FY["+ Vol + A (Jof* —m)
M N—_———
Higgs potential
with A\, m > 0. Now we have minima at |@|? = m > 0. The field equations are
(dv)*F = j(p
ViV =4 (lo* —m) ¢

Example 3.4. Let G = U(k). Take p; the standard representation of U(k) on C* and py the adjoint
representation of U(k) on its Lie algebra u(k), described by

pa(g) : X = gXg~!
Each X € u(k) gives a linear transformation C*¥ — C*, and we get a G-equivariant linear map

u(k) x C* — C*
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(X,v) —» X (20)
(p2(9)X.p1(g)v) = p1(g)(X.v)

Exercise 3.5. A G-equivariant linear map « : V; — V5 between representations p; : G — GL(V;)
induces a vector bundle map E — F for £ =P x,, Vi, F =P x,, V5

(03

Hence the map (20) induces a bundle map ad(P) x E % E

Now take the potential

1
B9, 0.0) = 5 [ |FL 490l + V0P + (0.0, 0)

interaction term

where ¢ € I'(E), ) € I'(ad(P)). The E-L equations form a coupled non-linear elliptic system.
(@Y)*FY = jo + jy
V*V(p = —Re <',Oé('ll), (P>
V*Vll) = _<(pa Oé(', (p)>

3.2. Remarks on abelian gauge theories I. Gauge group.

Let P = M be a principal G = U(1)-bundle. Since G is abelian, the gauge group is (recall exercise
G=T(AdP)=T(P xaa G)

={@:P=G : opg™") =90y}

={¢:P—=G : o(pg™") = o(p) Vg}.
i.e. @ is constant on the fibers of 7, and descends to M:

G = Maps(M, S*)
which is a group by the multiplication in S', so G is abelian. This contains the subgroup
G ={e® . feCc®(M)}cg

of maps homotopic to the identity (by e**f(®) ¢ — 0).

Lemma 3.6. There is a short exact sequence of groups

1—>gli>gi>H1(M,Z)—>0

Proof. The inclusion 7 is injective.

We want to show exactness at G. For ¢ € G = {M — S'}, define
j(@) = [@*df] € Hip (M)
Note de*df = @ddf = 0, so @*df is closed and defines a cohomology class. For any closed loop v € M,
/ @ df = / df = winding number € Z
¥ e ()

Hence [@*df] € H'(M,Z) C Hig (M, R).
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If @(z) = e/, then @*df = df is exact, so [@*df] = 0. This proves imi C ker j.

(Just to make sure) let’s see that @*df = df. The function 6 : 'V + 1 is a locally defined function with
differential df. So locally we can compute using the also locally define 8 o ¢

@*df =d(0o @) =d(0(c')) =df.

Finally, let [a] € H'(M, Z) be represented by a closed 1-form «. Fix p € M and define

f(a:)z?w/ya

for v a path from p to z. Since da = 0, this definition is independent of homotopic paths . In the case that
« is exact, then f is globally well defined and smooth, since the integral of a around any loop is 0. We have
df = 27, and if we define the map

g(z) = @),
then this proves ker j C im¢. Continuing with this if « is not exact, note that g(x) is still a smooth function
M — S, since if a loop 7 represents a nontrivial homotopy class, then fn « is an integer, so AT s well

defined, and this proves that j is surjective. Note that ¢~ 'dg = 27ia. ([l

3.3. Remarks on abelian gauge theories II. Global picture.

We have the space of connections A, and the quotient (the orbit space) B = .A/G. The gauge orbit through
VeAdis

OV ={V' =goVog ' =V —(dg)g~' : g€ G}
Note that the constant gauge transformations g. : M — S, g.(x) = ¢, act trivially on A. (V = gVg~! <=
g = g..) We want to ignore this degree of freedom, so we can remove it by replacing G: (one of the following)

e Use G/{constants g.}.
o If M is compact, fix p € M and use G, ={g € G : g¢(p) =1d}, the “based gauge group”.
e If M is not compact, use G = {g € G : g — Id at co}.

Recall that A is an affine space.

Lemma 3.7. For an abelian gauge theory,
(a) G-orbits OV are affine subspaces of A.
(b) There exists a slice SV through each V € A (see below).

Proof.
(a) For g = e € Gy,
OV ={V +idf: f € C®(M)} =V + (image d : C>° — Q)

is an affine subspace.

(b) For V € A, set
SV ={V+id : AcQj,, d*A=0}.
(Recall that for a linear operator T, ker T* 1 imT.) We claim that SV intersects each G; orbit exactly
once (i.e. a slice for Gy).



38 NOTES BY KESHAV SUTRAVE LAST UPDATED: JANUARY 20, 2023

Given V' = V +iB, we need to find g such that ¢g.(V +iB) € SV. So we need
0=d"[g.(V+iB)—-V]
=d*[V+gdg™' +iB - V]
= d*[gdg~" +iB]
We use the Hodge theorem to write
B=h+df +d*y
for h harmonic, f € C®(M), v € Q2%,. Set g = ¢/ € G;. Then
d*(iB+gdg™') = i[d’:h +d*df + d*c.l*v +d*((gdg™")] = i[d*df — d*(df)] =0
where the marked terms are vanish since h is harmonic (dh = d*h = 0) and (d*)? = 0 (for any function
0, (d*d*y,0) > = (7,ddf) ;2 = 0). Finally H'(M,Z) acts on SV by V+ B — V + B +q, for a harmonic

(d*« = 0). Thus
B=SY/HY(M,Z)

3.4. Self-Duality.

Definition 3.8. Let V be an n-dimensional vector space with a metric (, ) and orientation (e1,--- ,e;,)
(and thus volume element dv =e; A --- , Aey,). The Hodge star operator

*: APV = APTPVE
is defined by the following: For all w,n € APV*.
w A *n = (w, n)dv.

In particular, if dim V' = 4, then x : A2V* — A2V* with x? = +1 (xe! Ae? = e Ae?, etc.). So we decompose
A2V* into + and — eigenspaces of .

NV =NV e ATV (21)
In fact dim A*V* = 3 with basis {e! Ae? £ e Aet, el Ned et Ae?, el Aet £e? Ae}. For the induced
metric on \2V*, is an orthogonal decomposition (and ’ei A ej’ = 1).

In the global version, we let (M*,g) be an oriented Riemannian 4-manifold. Then we can decompose the
bundle A2T*M = AN*T*M & A\=T*M, so Q32, = Q}, ® Q3.

Definition 3.9. We say a 2-form w is self-dual if xw = w, and anti-self-dual if xw = —w.

Then any w = wt +w™ of SD/ASD components, and
|w|2 = ’oﬁ"Q + !w_’2. (22)

More generally, for a vector bundle (E, { , )) — (M?,g), x extends to x : Q3,(E) — Q3,(E) by x(w® ¢) =
(xw) ® @ and holds.



GAUGE THEORY, TOM PARKER’S CLASS 39
Day 16
For a connection V on E, with curvature FV € Q%(g), F = F™ + F~, and Yang-Mills action
£(V) = %/M|F|2dvolg - %/M|F+|2 +[F~[Pavol,

If M is compact. The chern class c3(E) € H2(M) (or maybe co(E) — ¢3(E)) evaluated on the fundamental
class [M] is the integer

K = () M] = 8%/Mtr(F/\F)
_ 8% /M te(F A%(F* — F)

_ 8% /M ((F, F*) — (F, F~)) dvol,

1 -
_ W/M (|7~ [F~ ) avol,

E(V) = eo(B)M] + [ |F~[*dvol,. (23)
M

Hence

Note that ca(E)[M] is a topological invariant, the instanton number k. Equation proves that £(V) >
c2(E)[M] = k with equality iff V is a self-dual connection (F~ = 0). In fact, we have

Lemma 3.10. On a compact oriented Riemannian manifold M,
E(V) = |ea(B)[M]| = |K]
with equality iff
o V is self-dual (SD) (for k >0)
o V is anti-self-dual (ASD) (for k <0)
o V is flat (fork=0)

Definition 3.11. Let MSP := {[V] € B: FV is self-dual} be the moduli space of self-dual connections.

So MSP c B is the absolute minimum of E : B — R.

Remark. Locally, self-duality is a first order PDE for the connection form F* = (dA+ A A A)T which
implies the second order Yang-Mills equation d*F' = 0.

There exist other interesting cases of first order equations which imply the second order field equations
of a gauge theory.

3.5. Remarks on abelian gauge theories III. Moduli space.

Take the case G = U(1) again, and P — M a principal U(1)-bundle. Every representation of U(1) is a direct
sum of 1-dimensional representations, each of the form py(e?) = ¢™*? for some k € Z. Thus

Px,V=LMg.. . @Lkwm
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where L = P x,, C is the fundamental line bundle, and L¥ = L ®¢ - -- ®¢ L. So without loss of generality
~—_———

k
we can consider connections on L — M.

Suppose there is a solution V° of the Yang-Mills equation:
d*F=0 (24)
Any other V = V° +iA, with A € Q},, is Yang-Mills iff F satisfies
0= (V) F=d"F = d;FZ‘} id*dA
=0

Let 8% = {V? +iA : d*A = 0} be the slice through V. If we denote YM = {V € A : d*FY = 0}, then

YMNS®={V°+iA : d*dA =0 and dd*A = 0}

= {V° + i} where #' = {harmonic 1-forms} = H*(M,R).

Thus, the moduli space

YM _YMNS® _ HY(M,R)

M= “maLz) - B2

Proposition 3.12. For a complex hermitian line bundle over a compact M, the moduli space M is
either empty or (diffeomorphic to) a torus T, where b* = dim HY(M,R).

3.6. Conformal Invariance.
The moduli space of solutions to the Yang-Mills equation (d*F = 0) depends implicitly on the metric g,

M = M(E, g). Recall that two metrics g, g’ are conformal if ¢’ = ¢2g for some ¢ € C°(M), ¢ > 0. (This
changes “scales” but keeps angle measurements the same) Locally on M",

/‘Fv‘f]d"dg = / 9% g F;j Fy/det g;jdzt - - da™.
U U

/|Fv - dvoly :/ ¢ 29 29" g Fij Fia /97" det gjdat - - da”
U U

_ /U "4 F2dvol,.

SO

Lemma 3.13. On an oriented Riemannian 4-manifold (not necessarily compact), the Yang-Mills en-
ergy, Yang-Mills equation, SD/ASD equation, and Yang-Mills moduli space are independent of the metric
in its conformal class.

Day 17
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3.7. The standard instanton.
We will now describe an explicit solution to the Yang-Mills equation for G = SU(2).
Background

The set of quaternions H = {¢ = a + bi + ¢j + dk : a,b,¢,d € R} has an inner-product {(q,r) = Re (¢7),
where § = a — bi — ¢j — dk. The unit sphere (the unit quaternions) S® C H is a Lie group with Lie algebra
718 =imH = {bi + cj + dk}.

We can also identify H = C2,
g=a+bi+cj+dk=(a+bi)+ (c+di)j=a+pSj

v (5)
(a -+ BJ)i = i = (80)]

(g) - (i?ﬂ)

Ez) Similarly, right multiplication by 1,14, j, k are

Then right multiplication by ¢ gives

1
0

{10\ (i 0\ _ (o -1\_ (0 i
T = 01 y Vi = 0 —i y Vi = 1 0 Ve = i 0/

Note vx(q) = gk = qij = v;7i(g). In particular, the Lie algebra T1.5% = span{~;, v;, 7} = su(2) — End(C?),
the traceless skew-hermitian matrices. Hence S® = SU(2).

Now consider the trivial H-line bundle

which is given by v; = (

E=R*xC?=R*xH

!

R4

with the standard metric on R* and ((x, q), (z,7)) = Re (¢7) on E. Every connection has the form V = d+ A4,
with A an im H-valued 1-form.

The standard instanton is V = d + A’, where

1 4
A/(x) = Tmz(awi + agy; + azvk), * € R

where the «; are the 1-forms
ap = ztda? — 22dat + 23dz? — 24da?
as = ztdz® — 22dat + 2*de? — 22da?

as = ztda? — it + 2%da? — 23da?



42 NOTES BY KESHAV SUTRAVE LAST UPDATED: JANUARY 20, 2023

One computes the curvature F' = dA + [A A A] (recall that our bracket has a 1 built in) and finds

1
F=———7(darv; +dagy; +dazw)

(1 + W)

dog =2 (dac1 Adz? 4+ dz® A dx4)
dag =2 (dl‘l Adad +dat A de) SD basis on R*
dag =2 (d9171 Adz* 4+ dz? A dx?’)
[Check: insert computation| So F' is self-dual, and thus a Yang-Mills field (a Yang-Mills field refers to the
curvature of a Yang-Mills connection).
Note that
ldoy|*=4-2=38

at-utin (i 9 ¢ )-(( )

[Check this| and the same for j, k. So the energy density is
e(F) = |F|*da! Ada? A da® A da?

:de

(1 + |x|2)4

which is bump-like, centered at the origin.
We can build other solutions by applying conformal transformations.

(1) Dilation: The map py : R* — R* for A > 0 by px(x) = Az is conformal. So A* = p5 A,V =d + A* is
a self dual connection for every A > 0.

A , ,
RSTEE (17; + a2y + az)
A A2
F* = —————— (da1y; + dagzy; + dazye)
(r2 + Jaf*)
48)\*
e(F) = |F/\|2 dz = 872 dx

(r2 + 1)
(Check this)

Lemma 3.14. As A — 0, e(F*) — 872 -5(0) as distributions.
Proof. Let u = \? +r? (r = |z|,du = 2rdr). Note Vol(5?3) = 272

e o] )\4 [e’e]
e(F) = Vol(S?) 48—  r3dr = 48m%\* u™ = X2t du
4 ut N~~~ 2
R 0 L (u—A2)du A

1 a2 1 A2 1 1
=48m°A | + | =48m°\ | — S| =487 |- — < | =8r"
8T [2u2 + 3u3L\2 8T N 300 8m 53 8w
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Now, for every € > 0,
/ e(F*) 2200 and / ze(FY) — 0.
Be(e) R4

(Check this) For every f € C2°(R?), write f(z) = f(0) + zg(x) for a bounded function g.
| 1@er =10 [ e+ [ ager) — s225(0),
R4 R4 R4

(2) Translation: For each y € R?,
1

Ay(z) = m( .

)

is a self dual connection.

(3) Stereographic projection: o* : §4 — {+} — R* is a conformal map with da(tp) : T(,p)S‘1 — R* an
isometry. Hence the pullback connections

Vt=d+ (ot)*A* for $* — {+p} (25)
V™ =d+ (c7)*4* for $* — {—p}
are self dual connections on the trivial H = C2? vector bundles.

If we regard S* as the unit sphere in H x R, define
g:S*\ {£p} = SU©2)
(¢:2) = g
On the equator, this is the identity map S — SU(2) = S3. One can see that V- = ¢.Vt = gVtg—L
(Check this.) So using g as a transition map, we obtain a (twisted) C2-vector bundle E — S* on which

defines a self-dual connection V> for each A. Further, we can rotate S*. This gives us a 5-parameter family
of self-dual connections VMY with scale A € R* centered at y € S*.

Lemma 3.15.
(a) For eachy, limy_,ge(FM) = 8725(y).
(b) Each AM is a connection on the k = 1 bundle on S*.

Proof.
a) By rotating S%, we can assume y = p. But dot : 7,8 — TyR* is an isometry (Check this). Then the
P
result follows from lemma, [3.14
(b) By self-duality,

1 1 (2 A0, 1 2
KAZS?/SALJEI'(F/\F):W/;AI}F y‘ dVOlg—>8?'87T =1

But this number is a topological invariant of the bundle and thus independent of A.

Curvature of the standard instanton.
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4. OVERVIEW OF ANALYSIS

2019/02/22, Day 18

4.1. Sobolev Spaces & Embedding Theorem.

Let £ — (M, g) be a hermitian vector bundle over a compact Riemannian manifold (Lorentzian is not good
enough here).

Definition 4.1. For an integer £ > 0 and 1 < p € R, the Sobolev space W#?(E) is the completion of
the space of smooth sections I'(E) under the (Sobolev) norm:

€l = ( J 19 e dvolg)p (26)

where V¥¢ is the k' covariant derivative, using a connection V on E.

Remark.
e This is a Banach space (Hilbert space for p = 2).
e WUP(E) = LP(E).
o Let V' =V + A ,with A bounded (M is compact), be another connection on E. Then there exist
constants Cy, Cy > 0 such that

CIH§| k,p,V < Hf”k,p,vf < C2||§||k,p,v

i.e. the norms are equivalent, so W*?(E) is defined independent of the connection V.

Definition 4.2.
C' = {C" sections of E'} = completion of T'(E) under |||
I€llce = sup (|V'E] + -+ V€| + [€]) -

Recall:

e A Banach space is a vector space with a norm satisfying

1€+ nll < €l + lnll, [lEl =0, [l =0 < &=0.

which is complete as a metric space.

e A linear map ¢ : V — W between Banach spaces is bounded (||@(v)|| < C||v]|| for all v) if and only if
it is continuous.

e A linear map ¢ : V — W is called compact if, for every bounded sequence {v;} in V, the image {¢@(vx)}
has a convergent subsequence in W.

Theorem 4.3 (Sobolev embedding). With E — M™ as above, the identity I'(E) — I'(E) induces

(a) a continuous linear map WHFP(E) — WHI(E)  if k — T2l-7
(b) a compact linear map WHP(E) — WHU(E)  ifk>1 and k — z>l-2
(c) a compact linear map WFP(E) — CYE) ifk — 2>
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The tensor product (§,m) = £ ®@ n induces

(d) a continuous linear map ~WH*P(E) x WFP(E) - WFP(E® E)  if k — 2 >0.

Proof. (Cited Evans - Ch. 5) For a compact manifold M, the Sobolev theorems carry over from R™ by using
finite covers and partitions of unity.

Meanwhile here is a nice proof from [Rosenberg - Laplacian on Riemannian manifolds] using the Fourier
transform, for a special case (recorded here for my own reference). Let  C R™ be a bounded open set. We

want to prove that if f € W*2(Q) then f € C*(Q) for all s < k — %. Let f denote the Fourier transform.

The Fourier transform is an isometry on L2, and differentiation transforms into multiplication, so the Sobolev
norm is equivalent to

o ([ Fiof @ |5|2>’€d£)é (27)

because one can find constants to compare the two degree k polynomials in [¢|°, namely (1 + |¢[*)* and
(14 ¢2 + -+ -+ |¢€/**) which appears in the original norm.

First consider the s = 0 case: assume k > n/2 and f € W*2(Q). Then

@l =| [ e <Fe ag

k
2

=| [ emearien s i)
R™

<([ avien ols)é (f

and since k > n/2 the left integral is finite, so
1f(@)] < C|[flly2-

Now by definition, a function f in W*?2 is a limit of smooth functions f; — f. This last statement shows
that

(&) dg‘

Fof o+ iepy d&)é ,

supfi(z) = f(2)| < C|fi = fllpo — 0

zEQ
i.e. that f; — f uniformly, and thus f is continuous.

Now we look at general s. For any multi-index «, the basic derivative operator 0% : W2 — Wk—lel.2 jg
bounded (see below). Assume f € W*? and k — s > %. Then for any o with |o| < s (i.e. take fewer than s
derivatives), the first part shows that 9% f € C°. Thus f € C*.

To see explicitly why 0 is bounded,

10° 17y = |
R’!L

= [l IR eyl ae
< Ol

—
[e]

77 feysel g
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since we can find C' such that
2 k— 2
€11+ [ < o+ g
(Remember to think about £~ = £ --- €2 and IEP =€2 4. +¢2)

(Check: Also insert proof of Rellich-Kondrachov compactness: W*?2 < W2 is compact if k > [.)

Note that can be used to define Sobolev space for any real k, and the proofs above work for all k. O

4.2. Elliptic Linear Differential Operators.

The prime example of an elliptic operator is the laplacian A. Consider, in general, a linear differential
operator D : I'(E) — I'(F'), between two vector bundles over M.

Definition 4.4. Ellipticity is a requirement on the coeflicients of the top order term: In local coordinates
If D= a'Vy +A
oo D=Y a¥V;V;+Y A'Vy +B
or D= Z a'V;, Vi, -V, 4 lower order terms

Then D is called elliptic if a’(z) : E, — F, is an isomorphism for all z € M and all I.

A good reference is [Nicolaescu - geo of manifolds, chapter 10|

A few examples of elliptic operators:

Example 4.5. A Dirac-type (1% order) operator D = I + A.

Example 4.6. A Laplace-type (2°¢ order) operator D = V*V + A -V + B.

Example 4.7. In an orthonormal frame, the rough laplacian V*V has (%) equal to the identity matrix.

We will use, without proof, the following important result:

Theorem 4.8 (Elliptic regularity I). Let D be an I order elliptic operator with C* coefficients. If
£ € WkP and D¢ € WEP then ¢ € WFHLP and

€ksrp < € (e, + 1DE,) - (28)

Note (to self).
e [l == llgllop = €l Lo is the LP norm.
e To be careful, I think we need that £ is in the domain of D (in the sense of an unbounded operator)
in order to write down D¢ at all. Response: We assumed that DE € WFP to start. In particular,
¢ is assumed to be in the domain of D.
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e With an induction proof (on k), the above estimate is equivalent to

€011 < C (el + 1DE ) (29)

which also appears as “elliptic regularity” (e.g. in Rosenberg - The Laplacian on a Riemannian
Manifold).

Proof. The better bound is , so the harder direction is going back to that one. If £k = 0, then
the inequalities are the same. Suppose for some k, we have proven that is true for all j < k.
We also assume With k replaced by h), for all integers h > 0. In particular we assume

€lsrs1p < C (€ + 1DENs1,) -

But by the induction hypothesis with j = k + 1 — I < k (assuming reasonably that [ > 1) we can
bound the one different term

€ls1m00 < C (JEl, + IDEL,) -

Then since j < k again, [|-||; , < ||, ,» so we have the desired

€lksrsip < C (1€, + D€, -

O
e As noted in Rosenberg, (at least over a compact manifold) the reverse inequality is true with a
different constant C, so the two sides of the inequality define equivalent norms.

(Check: insert proof of Garding’s inequality from Rosenberg, uses Weitzenbock formula. This is for the
special case of A = d*d + dd* on differential forms.)

Applications

Corollary 4.9. With D as above, every W2 solution of D€ =0 or DE = X is C°.

Proof. (Bootstrapping) Repeatedly apply with D or D — \I:

EeWwr? = ¢ewth?

g c W1+2l,2

— £ € W™2, for every m, (note that WP < W*P ecasily whenever t > s,).

— £ e C™ %, for every m by Sobolev embedding.
= e (C™

(Check: Why do we need D — AI? Why not just replace ||DE|l, , = A[[]]; 5 < 00?)

Corollary 4.10. Each eigenspace Ex = {£ € W12 : D¢ = X¢} and E = span{E, : u < A} is finite
dimensional.
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Proof. Fix A and consider the unit sphere S\ = {{ € E : [[{]|, , = 1}. Let &, be a sequence in Sy. By (28),

sz < € (Ially + Mallz) < CA+Nlallyz < €

the sequence is bounded in W'%2, But W'+k2 < W12 is a compact embedding, so there is a subsequence
(still called &,,) converging to & in W12, The norm is continuous so |||, , = 1, i.e. & € S.
This proves that the unit sphere S is compact, so E) is finite dimensional. O

(Check: Significance & proof of the second E} result?)

Corollary 4.11 (Poincaré Inequality). With D as above, and k,p such that W*P «— L% there is a C
such that

1€llt1,p < CIDEly,  for & Lp ker D (30)
for € € WkTLP which are L?-perpendicular to ker D. Thus only the DE term in is needed for such
£.

Proof. Since p is fixed we will leave this off the norms.
Suppose this was not true. That is, suppose, no matter how big C' is, there is some & which breaks (30]). In
particular, for each C = n € N, there is a &, € W*+P N (ker D)+22 such that

1€l 0 > nllDEly

Note that if we replace &, — §n/||£n\|k+l, then the above is unchanged. So we have a sequence &, such that

HgnHkH =1
D&, < -
nllk n

(Again) the compact embedding W*+\P < TWFP gives us that a subsequence &, converges in W*? to some
&. Then

1€n = Emllegs < C g = &mlly + D& — D&mll)
< C(én = &mlly, + 1D&ally + [[1DEmlly) — 0

shows that the subsequence we picked is in fact Cauchy, and thus convergent to &) in W*+4P. The two limits
must be the same, since

160 = &ollk,p < 160 — &nlle + 1160 — &nlly
< 110 = &nlle + 1160 = &nllery

can be made arbitrarily small.

Now
DSl < 1D&nll+11D (o — &n)lly,
1
< o +Clléo = &nllgry —0

(we used that D : W*+LP — TW/FP is bounded, a believable statement which we prove below). So & € ker D.
Our initial assumption implies
2
0= (&ns80)rz — [1€ollz2-

Therefore § = 0 and &, — 0 in W**+hP contradicting that [|&,|],,, = 1. O
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As mentioned, D is bounded:

Lemma 4.12. For (M, g) compact and D : T(E) — T'\(F) an I*"-order linear differential operator, with
C™ coefficients. Then D extends to a bounded linear map

D : WkHP(B) — WhP(F) (31)

Proof. The idea is quick for smooth sections I'(E): bound the coefficients by compactness. After that we
approximate for all of WH+hp,
Fix a connection V on E. Write locally

D=a" 0V V-V, 4

l
=y AV
j=11]

The A’ are smooth bundle maps. Because M is compact, HAI || < C for some constant. For smooth &,

IDel, < || a"vie],
7.1

<cy|vie
g1
< 1€l

We extend D to the Sobolev space (which is the completion): Any ¢ € W*+P is the W+l limit of smooth
&n- Then

\

1D(En = &m)lly, < Clign = Emllgyr — 0

so D¢, is Cauchy, with limit denoted by D¢ (this defines D& on W*+LP). This is independent of the choice
of sequence and satisfies the same boundedness. (Check this) O

Exercise 4.13 (Interpolation Inequality). For each e, 1 <1 < k, there is a constant C(¢) such that

1€l < € liElly, + C(e) €l 1 (32)
N N——
stronger weaker

[Check - move this to earlier, right after Sobolev spaces?]

Proof 1. The intermediate terms in the definition of the Sobolev norm can be bounded by the top and

bottom terms
1

el ~ ([ [V5¢”) " + el
M

[Check - detail proof] O

Proof 2 (Exercise). Suppose not. Then there is an € and a sequence &, € W*P such that

160l > €llénlli,p + nll&nll s

for each n. By homogeneity of the norms, we can divide and assume ||&,

1> ell&nlly, , + nll€nll 1

I, = 1. Thus
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Now
1> €||£n||k,p

implies a subsequence converges to some ¢ in WP, Notice that WP < L' continuously, so it also converges
in L'. Meanwhile

1> n||§n||L1
gives us that |||/, — 0, which implies our limit £ = 0, contradicting that

€l = lim [l = 1.

4.3. Weak Solutions.

The theme of “Elliptic Regularity” requires the following

Definition 4.14. The (L?) adjoint D* of D is defined by
(D¢, m)r2 = (& D) L2

/ (D*¢,m) dvol:/ (&, Dn) dvol
M M

for all smooth &, 7.

Example 4.15. (Exterior derivative) The adjoint of d : Q7 — Q¥ is defined by the above and is an
operator d* : Q2! — OF

The hodge star tells us what this operator is explicitly. Let & € QP and n € QPT!. Recall that
*? = (=1)P("=P) on p-forms (as well as (n — p)-forms). Then

/<d§,77> dvolz/ d& A xn
M M
=(—1r! d
0t [ gndan

— (_1)p—1+p(n—p)/ ENxxd*n
M
= (—1)”"‘1(—1)”_”2/ (&, dxn) dvol
M

= (—1)rnt /M<§,* d *n) dvol

shows the formula
d* = (=1)P""txd % (33)

when acting on (p + 1)-forms.

In general, if D is a k*" order linear differential operator (LDO) with smooth coefficients, then by integration
by parts so is D*.

| \
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Definition 4.16. A section ¢ € WP (E) is a weak solution of D¢ = 7 if

[ 1&0%0) = n.0) =0
M
for all smooth ¢. (Imagine (D& —n, @) =0.)

Now elliptic regularity applies starting with weak solutions for elliptic (LDO) with smooth coefficients.

Example 4.17. If f € W2 is a weak solution of Df = 0, then f is smooth.

4.4. Holder Spaces.

For a Riemannian manifold M, recall that
C%(M) = {bounded continuous functions f : M — R}

is a Banach space under the norm
[fllco = sup | f(z)]
xeM

Holder spaces extend this notion, and interpolate between C°, Lipschitz, and C! functions.

Definition 4.18. Let o € [0, 1]. A function f : M — R is a-Holder continuous if there exists a C' such
that

[f(x) = f(y)] < Cd(z,y)
for all z,y € M, (notice for @ = 1 this is just Lipschitz). Then the a-Holder space
Co*(M)={feC® : fisa-Holder continuous}

is a Banach space with the norm

[f(x) = f(Y)
o = +sup ———_
Illone = 1 llgw +sup 2=
Similarly, using
Ifllex = sup 0°7(2)
veM

we can define the space C*® using the norm

0
Fllenn = I flos + 3 sup!

la|=k Ty

“f(x) = 0°f(y)l
d(z,y)*

All of this works for sections of vector bundles, where we define |0%f(x) — 0% f(y)| using parallel trans-
port.

Theorem 4.19 (Elliptic Regularity I1). Let D be an I*® order LDO with smooth coeffictients. Then
€€ O and D¢ € CH implies that ¢ € C*T and

[€llgrria < C Dl + IEllga) - (34)

One obtains elliptic regularity for non-linear equations by bootstrapping again.
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Example 4.20. Suppose @ € LS satisfies the equation
Do = ¢*
weakly on a compact manifold M*, with D a first order elliptic operator. Then
p’el’? = Doel?
Elliptic Regularity I, — e W3
Sobolev embedding; (k L. "> s <1 e 4)
P q 3 q
— @ e L?
Repeat: @2 € L® = Do € L
— e WS

4 1 1
1——:— 0,0{ = —
( 5 3>0) = @ e(C" « 3

Repeat: @2 € % — D@ € ¢
Elliptic Regularity II, — e

= @ € C*

4.5. Variational Methods.
The goal here is to find weak solutions to a differential equation by minimizing an energy functional.

Let D : T'(E) — I'(F) be a first order elliptic operator on a compact manifold M. Then D*D is a second
order, self-adjoint operator, so we can consider its eigenspaces. Define the energy

B6) = [ |DeP

The energy is a bounded quadratic, thus smooth, function on W12, The statement of elliptic regularity
becomes

€13 5 < € (Il + €l )
= (B©) + I¢13:)

Lemma 4.21 (Minimization Lemma). Let V C L? be a closed linear subspace, and let S C L? be the
unit sphere. If VNS # @, then E attains its minimum on Sy =V NS N W2

Proof. Choose a minimizing sequence &, € Sy
E(&n) — Eo =inf{E(§) : {€Sv}.

By elliptic regularity &, is bounded in W2 and thus has a weakly convergent subsequence, converging
strongly in L? by compactness W2 < L2. So the W2 limit &, is in V by closure and in S by strong L?
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convergence (which implies convergence of the norms). Therefore & in Sy. Now
B(&) - Bl&n) = [1DGl" - D6
— [ 2ID&P - Dol ~ 2(Dgo, D) + 2(Déo, Dew) ~ 1 D6
- [ 208, D& - &) - ID(60 - €0)F
< [ 206, D(go &) —>0

implies that
Ey < E(&) < liminf E(§,) = Ey.

Thus the minimum is attained by & € Sy . |

Theorem 4.22 (Spectral Theorem for D*D). With D an elliptic first order differential operator as
above, there is a complete L?-orthogonal decomposition

L*(E) =P En,

into finite dimensional eigenspaces (D*DE = X¢). The eigenfunctions £ are smooth, and the eigenvalues
{\:i} are real, nonnegative, with no accumulation points.

Proof. Apply the minimization lemma repeatedly to obtain the eigenspaces:

Set V1 = L? to get a minimizer ¢; € S; := Sy,.

Set Vo = {€ € L? : (£&) 2 =0}, the L?-orthogonal space to &1, with minimizer & € Ss.

In general, set V,, = [span(&y, ... ,fn_l)]L, with minimizer £,,. So we have a sequence &,, € S, with increasing
energy

E() <E(&)<...

S
Orthogonality of the {,} is clear from the construction. Let W = span{&,} ... [Check: Finish proof of
Span{gn} = LQ]

The numbers A, := E(&,) = [ \D§n|2 are real and nonnegative. Since the £,’s were chosen as minimizers,
we can look at the variation of the energy functional at £,:

1d

0= 5B +0b)

~ [ e, ow)

(= [wrpe.w)

t=0

for every P € T'Sy,,. By L?-orthogonality we have

/(D@,ka) =0 forall j+#k.
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Now take any W12 section 1\, and by completeness write { = > a,&,. We have

/<D§n,D1b> - O‘ngnﬂm = /<D§n,anD§n> - )‘n<fn7an‘£n>
= an(E(gn) - )‘n) =0,

ie. D*DE, = A\, &, weakly. By elliptic regularity the eigenfunctions are smooth. [Check: write out details]

[Check: dim E}; < oo and no accumulation points.] O

Say the operator above is defined as D : T'(E) — ['(F). The operator extends to Wh2(E) — L2(F). So we

have
D
B\ — F,
Do —= Dh.
Notice if D*DE = X, then

D(D*Dg) = D(XS)
(DD™)(D§) = A(DS)

so ( = D¢ is an eigenvector for DD* with the same eigenvalue .

e = [0 = [ e (35)

and thus ¢ = D¢ # 0. This means that D maps E) — F) isomorphically.

Furthermore, if A # 0, then

Each E) for A # 0, is “paired” by D with an F). The full picture is
ker(D*D) @& @) Ex, —2= €P F», @ ker(DD").
Ai#0 Ai#0
In fact the trick in shows that ker(D*D) = ker(D) and
ker(DD*) = ker(D*) = (im D)* = coker(D),

SO

ker(D) @ @ By, 2 @ F, @ coker(D).
Ai#0 Ai#0

Remark. We can modify the decomposition to have eigenvalues of D rather than D*D. Define the first
order operator

D:T(E®&F)—T(E®F)
p(3)=(o ) () -(28)

~( &\ _ [(EDDe\ [tV A&
P (sne) = (Mo ) = () = (5be)

So D is self-adjoint with eigenvalues equal to the square roots of the eigenvalues of D*D.

Then for € € Ej,
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4.6. Spectral Flow and Index.

Now we will consider a family of elliptic operators D,, in general parameterized by a manifold p € P.

Example 4.23. Define D using a family of coefficient matrices
{4,:R" = R™ : pe P=R'},

so that
af o 0

oz dxb’

D, = (Ap)

Example 4.24. For a family of connections P C A on a vector bundle E, we can define a family of
laplacians

D : OP(E) = QP(E)
D =dv(@v)* + (dv)*dvV forVeP

Spectral Flow

Consider a 1-parameter family
D:;:T(E)—>T(F) 0<t<1

For each ¢ we have the picture from so we have eigenvalues A, (t) of the operator D} Dy, (or of Dy).

Theorem 4.25. The eigenvalues A\;(t) vary smoothly with t.

[Check: insert plot of A;(t)’s varying with time, some crossing the 0] At any time ¢, we have the spectrum
{\:i(t)} distributed on the real line. As ¢ changes, some of the \;’s may pass through 0. The spectral flow is
the number of times this happens (counted with sign).

Definition 4.26. Suppose ker Dy = ker D1 = 0 (so none of the \; start or end at 0). The spectral flow
of {D;} is defined as

SF(Dg,D1) = #{tx : A\i(t) crosses 0 transversly from — to + at ¢ =t}
— #{tr : A\i(t) crosses 0 transversly from + to — at t =t}

[Check: Show that the spectral flow SF(Dg, D;) is independent of the path.]

Exercise 4.27. For a family parametrized by a manifold P with dim P > 1, the spectral flow is
well-defined for generic paths, and is independent of path.

Index

Definition 4.28. With D elliptic as above, the index is
ind D = dim ker D — dim coker D
= dimker D*D — dim ker DD*
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Recall that we have

ker(D) @ @ By, 2 @ Fy, @ ker(D").
Ai#0 Ai#0

Define the “thickened kernel”

kerpa D :=ker D & @ E,.
[Ai| <A

[Check: Proof of something like the index is constant or independent of path. Here is what is in the notes:
Define the thickened kernel. ... This is finite dimensional Then ind D; = dimkery D; — dimkerp D} for
every A not in the spectrum of D since kery D — kery D* is an isom on (ker D)* to (ker D*)*. Then SF
picture shows this is independent of ¢ in generic paths = is independent of D, for p € P for connected P.
(= index is locally constant, can choose different A for different subintervals) — this last part I remember.
Choose A on a small subinterval of [0,1] so that no A crosses it, and the index is the same. Whenever you
get to a A crossing, change A to where there is no crossing again on a next subinterval. In this way, you
show that something (index) is constant till the end.]

4.7. Determinant Line Bundle.
(Reference: Quillen ’82)

First consider the linear algebra picture. Let V, W, E, F' be finite dimensional vector spaces. We will for the
moment use the shorthand

AV) = NP(V) = A\"(V) 2 €,

Note that

e AN(VaW)=AV &AW with basis (v1 A+ Avp) A(wi A Awp) = (V1 A - Avy) @ (Wi A+ Awyy)
o A(V*) = (AV)" with basis v; A+ A vk
e Any linear o : V' — W induces a map AV — AW by

ViAo AU, = aup A Aoy,

which is an isometry if det a # 0. Equivalently, we get an element of the determinant line

deta € L:=A\(V) @A (W).

o 0

):V@E—>W€BF. Then
0 [6%)

Consider a map « = (

ANVOE)QAWeF)=AV*QAE*@ AW & A
det o = det a1 ® det as.

In particular, if as is an isometry, then this induces an isometry

AV @ AW 2295 A(V & BE)* @ A(W & F). (36)
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Now choose inner products on V, W, and decompose V- = @ V,,, W = @ W,, into the A; eigenspaces of
a*a and aa*. Write, for A € o(a) = the spectrum of a*a,

kerp « := @ Vi,

cokerp o := kery o*.

Notice « restricts to isomorphims ay, : Vi, — W), for A\; # 0. Then by we have an isomorphism
A(ker a)* @ A(coker o) 2 A(kerp o) @ A(cokerp )

writing kery oo = kera @ E, where E = EBO<‘/\1|<A Wi,

Now we consider the vector bundle situation

V <25 W

N/

M

Then ¢(p) = dimker o, is upper semi-continuous.

Set x = infs dim ker a,. We have “jumping loci”
Ji={peM : op)>r+l1}.

In general J; # &, so ker « is not a vector bundle. However, we have:

Definition 4.29. The determinant line bundle of « is

Lo = N(ker o) ® A\(coker a)*. (37)

Lemma 4.30. The bundle £, is a locally trivial complex line bundle.

Proof. At a point p € M, choose (local) metrics on V and W and decompose them into eigenspaces of a*«
as above. Fix A not in the spectrum a(a;ap). By the continuous dependence of the eigenvalues, there is a
neighborhood U of p, such that if ¢ € U, A is also not in o(ajay). Then implies that %, |y is trivial. O

Example 4.31. This applies in infinite dimensions as well. Let {DV : V € A} be a family of elliptic
LDO’s over a compact manifold M, parameterized by A a space of connections. We get induced maps
L2(E) 2 L2(F), and

Z =det D = A(ker D)* ® A(coker D)
forms a complex vector bundle over A

4.8. Basic analytic constructions of gauge theory.

Let (M, g) be a compact Riemannian manifold. For a metric vector bundle E — M, the space W*?(E) :=
WkP(I'(E)) is a Banach space, and is contained in C°(E) if k — 2 > 0. We also have the multiplication



58 NOTES BY KESHAV SUTRAVE LAST UPDATED: JANUARY 20, 2023

theorem:
WHhPH(E) x WP (E) — WEP(E)

(, )~ a®
is continuous if (ky — 2 ) + (ke — 2) > (k- 2).
Lemma 4.32. For any fiber bundle
F— X
M
the space W*P(F) of W*P sections is a smooth Banach manifold if k — % > 0.

[Check: Why, and why a manifold?]

In the setting of gauge theory: Let P — M be a principal G-bundle, with a compact Lie group G. Fix a
smooth reference connection V°, choose k, p with k > 1,k — % > —1, and consider the space of connections

A=AFP =(VO 1 A : Ac WFP(T*M ® ad P)}.
This is an affine Banach space.
Let the gauge group be

G =GP = [y c WHLP(P xpq G)}.
This is a smooth Banach manifold by the lemma, and the group operations
multiplication G x G — G
inversion G — G, ~—~!
are smooth, which makes G a Banach Lie group. For p € M, we have the closed Lie subgroup
Gp={veg : 7y(p)=1d}.

[Check: all of this|

Main case

On a 4-manifold (or perhaps n < 4), We might try AY? and G2? (so that F' = dA and f\F\2 make sense),
but G%2 is not Banach because we are in the borderline case (k — % =1- % P —1). So instead we use 422
and G>2. (When needed, set (k,p) = (2,2) below.)

I. The curvature map V — FV on smooth connections induces a smooth map
ARP — WL (N?T*M @ ad P)
for k — 2> 0.

Proof. For V = V° 4 A, we have the formula FV = F° +d°4 + A A A. Note
d°: WhP (A'T*M @ ad P) — WH 12 (A\*T*M ® ad P)
is bounded. Moreover A — A A A induces
Wi 98 ykp ke gkl



II.

I11.

IV.
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which is a composition of a bounded linear map and a bilinear map which is smooth for

Q(kn>>k1n < k72>71
p p p

The Yang-Mills energy
1
YM(V) = 7/ |F|*dvol
2/m

is a smooth map A*? — R.

Proof. We have W*~1# — L2 for k —1 —2 >0 — % which holds for the above (k,p) when n <4. O

The group G acts smoothly on A.

L — (VY%)y~!. This is a combination of the

Proof. A gauge transformation v € G acts by A7 = yA~~
smooth maps
e G—>Gbyy—n~y~
e (linear) multiplication W32 x W22 —; W22
e G — W?22(Ad P) by v+ V%

1

Define the orbit spaces

B=A/G and B,=.A/G,.
(Note that G/G, = G so “the difference between these” is finite dimensional.)
For the above (k,p),

Lemma 4.33. The spaces B and B, are Hausdorf.

This is not obvious (for quotient spaces). Consider, for example, the action of R* on R? by t.(x,y)
(tx,y/t). The equivalence classes are the curves xy = ¢, the origin, and each axis minus the origin. The
quotient space is not Hausdorff at the origin. In this case we may have two gauge orbits limiting close
to each other.

Proof. The L? metric on A

dist (V° + 4, VY + B) := (/ |A—B|2> (38)
M
is independent of V° ((X + A) — (X + B) = A — B for any X), and is G invariant
|AY = BY| = |y(A- By~ '[=|A- B, (39)

so it descends to a function
o s —1
d([A),[B]) = inf |4 — Bl L. = ;ggHV A-B|,. (40)

on the quotient space of gauge orbits [A] of V + A. The claim is that if d ([A],[B]) = 0, this implies
that [A] = [B], so that d is a metric. O
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